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Abstract

One of the major applications of fuel cells is as onsite stationary electric power plants. Several types of configurations have been
hypothesized and tested for these kinds of applications at the conceptual level but hybrid power plants are one of the most efficient. These
are designs that combine a fuel cell cycle with other thermodynamic cycles to provide higher efficiency. Generally, the heat rejected by
the fuel cell at a higher temperature is used in a bottoming cycle to generate steam. In this work we are considering a conceptual design
of a solid oxide fuel cell-proton exchange membrane (SOFC-PEM) fuel cell hybrid power plant [R. Geisbrecht, Compact Electrochemical
Reformer Based on SOFC Technology, AIChE Spring National Meeting, Atlanta, GA, 2000] in which the high temperature SOFC fuel cell
acts both as electricity producer and fuel reformer for the low temperature PEM fuel cell (PEMFC). The exhaust from the PEM fuel cell
goes to a waste hydrogen burner and heat recovery steam generator that produces steam for further utilizations. Optimizing this conceptual
design involves consideration of a number of objectives. The process should have low pollutant emissions as well as cost competitive with
the existing technology. The solution of a multi-objective optimization problem is not a single solution but a complete non-dominated or
Pareto set, which includes the alternatives representing potential compromise solutions among the objectives. This makes a range of choice
available to decision makers and provides them with the trade-off information among the multiple objectives effectively. This paper presents
the optimal trade-off design solutions or the Pareto set for this hybrid power plant through a multi-objective optimization framework. This
hybrid technology is new and the system level models used for fuel cells performance have significant uncertainties in them. In this paper,
we characterize these uncertainties and study the effect of these uncertainties on the optimal trade-offs. The framework developed in this
work forms the basis for optimal design and synthesis of any power plant under uncertainties in the face of multiple objectives.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Fuel cells are an important technology for a potentially
wide variety of applications including micropower, aux-
iliary power, transportation power, stationary power for
buildings and other distributed generation applications, and
central power. These applications are prevalent in a large
number of industries worldwide. Research efforts are being
made to design fuel cell plants with low emissions, high ef-
ficiencies, high performance and low costs. High efficiency
hybrid fuel cell power plants are being conceptualized in
order to meet the great expectations from this technology.
Also, a large number of materials need to be considered in
the fuel cells for electrolyte issues, electrode performance
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issues, and for different configurations in order to obtain
the desired properties. Moreover, the development in the
area of new materials and other technologies where the per-
formance and economic data is scarce and/or incomplete,
calls for consideration of uncertainties in the design and
optimization. Furthermore, the problem involves multiple
objectives such as cost, process efficiency and pollutant
emissions. The conflicting nature of these objectives makes
the handling of this problem an even more formidable task.
The solution of a multi-objective problem is a complete
non-dominated or Pareto set, which includes the alternatives
representing potential compromise solutions among the ob-
jectives. This makes a range of choice available to decision
makers and provides them with the trade-off information
among the multiple objectives effectively. In this paper, we
optimize the cost and performance of a new solid oxide
fuel cell-proton exchange membrane (SOFC-PEM) hybrid
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Fig. 1. SOFC-PEM hybrid fuel cell power plant.

power plant, evaluate and analyze the trade-offs between
the multiple objectives using an efficient multi-objective
framework. We use available experimental data from liter-
ature to characterize, quantify uncertainties in the current
density characteristics of the fuel cell models. The uncer-
tainties are propagated through the flowsheet model and
the optimization framework to obtain stochastic trade-off
surfaces.

The paper has been divided into six sections. InSection 2,
we discuss the salient features of the new SOFC-PEM hybrid
power plant. InSection 3, the concept of multi-objective op-
timization and a novel multi-objective optimization frame-
work based on a new and efficient algorithm MINSOOP
for solving nonlinear multi-objective programming (MOP)
is described. The results of the MOP problem are presented
in Section 4. Section 5presents the stochastic approach to
MOP. The deterministic and stochastic results have been
compared in this section.Section 6puts forth conclusions
drawn from this work.

2. SOFC-PEM hybrid power plant

A solid oxide fuel cell-proton exchange membrane hy-
brid power plant was chosen as our case study. This is
a conceptual design being the focus of current research
and development program at National Energy Technology
Laboratories (NETL)[1]. As shown inFig. 1, this plant
contains two fuel cells combined with a heat recovery steam

Table 1
Base case design and performance of the SOFC-PEM hybrid fuel cell
power plant

SOFC PEM

Temperature (◦F) 1750 176
Pressure (psi) 20 25
Current density (mA/cm2) 75 190
Fuel utilization (%) 70
Equivalence ratio 1.25

Power rating: 1472 kW; overall efficiency: 72.6%; capital cost: US$
1773/kW; CO2 emissions: 5.61 kg/kWh; cost of electricity: 6.35 c/kWh.

generation cycle. This use of two fuel cells makes the cycle
up to 37.8% more efficient than the case where only SOFC
is used (maximum efficiency of 52.4%). Natural gas, which
is used as the fuel, is processed in a fuel pre reformer and
fed to the SOFC, which acts as both electricity producer as
well as a fuel reformer for the PEM fuel cell (PEMFC). The
exhaust fuel from the SOFC is cooled and shifted in a low
temperature shifter that also functions as a low-pressure
steam boiler. Shifted fuel gas is then treated with pure
oxygen in a selective catalytic oxidizer to reduce CO from
several hundred parts per million (ppm) to below 10 ppm.
The utilization of this reformed fuel is completed in the
PEMFC where more favorable thermodynamics apply. The
exhaust from the PEMFC goes to a waste hydrogen burner
and heat recovery steam generator to utilize the waste heat
of the exhaust stream to make steam from water. This steam
produced in the low temperature shifter and the heat recov-
ery steam generator is used in both the SOFC and PEMFC.
In the SOFC, steam is used as a reactant for the reforming
and downstream shift reactions and to control against the
carbon. In the PEMFC, steam is used to humidify fuel and
air streams to maintain water balance in the electrolyte and

Table 2
The objectives, constraints and decision variables for the hybrid fuel cell
power plant

Objectives:
Min capital cost (CAP)
Min cost of electricity (COE)
Min CO2 emissions (CO2EM)
Max current density SOFC (CDSOFC)
Max current density PEM (CDPEM)
Max overall efficiency (ACEFF)

Subject to:
Mass and energy balance constraints
Power rating of 1472 kW (base case)

Decision variables:
Fuel utilization (UTIL)
Equivalence ratio (ERAT)
Pressure of the PEM (PPEM)
Fuel flow (FUEL)
Air flow (AIR)
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electrodes. Design and performance results obtained using
ASPEN simulator model[1] are summarized inTable 1.

The key assumptions in this advanced technology model
are: (1) staged cells can be manufactured and installed at the
same cost as unstaged cells, and (2) a sufficient number of
cells can be staged so as to closely approach the limiting case
performance for staged cells. As shown in the base case table
(Table 1), there are six objectives to be simultaneously opti-
mized subject to highly complex non-linear models. More-
over some objectives are conflicting and incommensurable,
i.e. it is not possible to improve them simultaneously and
there is always a trade-off. Hence a multi-objective optimiza-
tion framework is required to obtain the Pareto set.Table 2
shows the multi-objective optimization problem formulation
for the current study of the hybrid power plant.

3. Multi-objective optimization framework

As mentioned at the end of the previous section, the
economic objectives along with CO2 emissions, overall
system efficiency and fuel cell current densities form the
set of multiple objectives to be optimized simultaneously
for which multi-objective optimization is required[2,3].
Multi-objective problems appear virtually in every field and
in a wide variety of contexts[4,5]. The problems solved vary
from designing spacecrafts, aircraft control systems, bridges,
vehicles, and highly accurate focusing systems, to fore-
casting manpower supplies, selecting portfolios, blending
sausages, planning manufacturing systems, managing nu-
clear waste disposal and storage, allocating water resources,
and solving pollution control and management problems.

3.1. The MINSOOP algorithm

A generalized multi-objective optimization (or multi-
objective programming) problem can be formulated as
follows:

minimizeZ = Zi, i = 1, . . . p; p ≥ 2

Subject to

h(x, y) = 0,

g(x, y) ≤ 0,

(1)

wherex andy are continuous and discrete decision variables,
andp is the number of objective functions. The functionsh(x,
y) andg(x, y) represent equality and inequality constraints,
respectively. Though there is a large array of analytical tech-
niques to solve this MOP problem, they are generally di-
vided into two basic types: preference-based methods and
generating methods[5]. Preference-based method like goal
programming attempt to quantify the decision maker’s pref-
erence and with this information, identifies the solution that
best satisfies the decision maker’s preference. Generating
methods, such as the weighting method and the constraint
method, have been developed to find the exact Pareto set or

an approximation of it. As is well known, mathematics can-
not isolate a unique optimum when there are multiple com-
peting objectives. Mathematics can at most aid designers to
eliminate design alternatives dominated by others, leaving a
number of alternatives in what is called the Pareto set[6].
For each of these designs, it is impossible to improve one
objective without sacrificing the value of another relative to
some other design alternative in the set. From among the
dominating solutions, it is then a value judgment by the de-
cision maker to select which design is the most appropriate.
At issue is an effective means to find the members of the
Pareto set for a design problem, especially when there are
more than two or three objectives; the analysis per design
requires significant computations to complete, and there are
an almost uncountable number of design alternatives. A pure
algorithmic approach to solving is to pick one of the objec-
tives to minimize while the remaining others are turned into
inequality constraints with a parametric right-hand-side,Lk.
The problem takes on the following form:

minimizeZj,

Subject to

h(x, y) = 0,

g(x, y) ≤ 0,

Zk ≤ Lk, k = 1 . . . , j − 1, j + 1, . . . , p; p ≥ 2

(2)

whereZj is the chosenjth objective that wished to be op-
timized. Solving repeatedly for different values ofLk cho-
sen between the upper,ZL(j) and lower boundsZU (j) leads
to the Pareto set. The multi-objective optimization algo-
rithm, minimization of single objective optimization prob-
lems (MINSOOP)[7,8] used in this work uses the Hammer-
sley sequence sampling[9,10] to generate combinations of
the right-hand-side. MINSOOP exploits then-dimensional
uniformity of the HSS technique to obtain greater efficiency.
Fig. 2 shows how this MINSOOP algorithm improves effi-
ciency for a simple, nonlinear, convex optimization problem,
as the number of objectives increase.

Fig. 2. Conventional method vs. the new efficient MINSOOP algorithm.
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Fig. 3. Deterministic multi-objective optimization framework.

The first step in solving MOP problems is to obtain a
payoff table. A payoff table contains single objective val-
ues from single optimization problem, and also provides po-
tential ranges of the objectives (values of the upper,ZL(j)
and lower boundsZU (j)). The minimum value of (ZL) of
the Pareto surface is equal to the individual optimal value,
while the maximum value (ZU ) of the Pareto surface is the
maximum value of that objective function found when min-
imizing other objectives. In this way, an approximate range
of the right-hand-sideLk in the MINSOOP algorithm de-
scribed previously is determined.

Fig. 3 shows the framework that utilizes the MINSOOP
algorithm to address the deterministic MOP (no uncertain-
ties) with six objective functions. Inputs are given to the
multi-objective optimizer, which formulates single objective
NLP optimization problems and passes them on to the NLP
optimizer. The successive quadratic programming (SQP)
method is used for this framework because it requires far
fewer function and gradient evaluations than other methods
for highly nonlinear constrained optimization, and it does not
need feasible points at intermediate iterations. Both of these
properties make SQP one of the most promising techniques
for problems dealing with nonlinear constraint optimization,
like process simulations[5]. The NLP optimizer gives the
optimal value of the objective functions and the decision
variables which are passed back to the multi-objective opti-
mizer. This step is repeated about a 100–150 (estimated for
MINSOOP algorithm) times until we get a good approxi-
mation of the Pareto optimal set of solutions to the problem.

4. Deterministic MOP results and discussions

A payoff table is widely used in decision analysis, where
it specifies the alternatives, acts, or events. Especially in
MOP, a payoff table shows a potential range of values of
each objective. Further, this helps to identify the approxi-

Fig. 4. Capital cost and cost of electricity for different SOFC-PEM hybrid
plant designs.

mate trends of different objectives. The following subsection
presents the analysis of payoff table for the deterministic
MOP problem at hand.

4.1. Payoff table analysis

The payoff table (Table 3) shows the objective values of
10 different designs that were obtained by maximizing and
minimizing each of six objectives using the NLP optimizer.
These values are plotted inFigs. 4–7.

To reduce the complexity of the problem, we can look
at trends of various objectives plotted inFigs. 4–7. As we
can see inFig. 4, both capital cost and the cost of elec-
tricity follow the same trend. These two objectives are both
maximized and minimized at the same set of decision vari-
ables. Therefore, we dropped one of the objectives and con-
sidered only one in the next stage of multi-objective opti-
mization. Also inFig. 5, the SOFC current density and CO2
emissions are seen to have the same trend and can be com-
bined as one. Although the value of SOFC current density
shows a lot of variation the PEM current density remains
relatively constant showing little sensitivity to the change
in decision variables. Hence, we do not need to include it
in the set of objectives.Fig. 6 indicates a similar trend be-
tween the PEM current density and the overall efficiency
andFig. 7 demonstrates that the capital cost, cost of elec-
tricity and CO2 emissions follow the same trend. So finally,
we carry three objectives (capital cost, overall efficiency and
SOFC current density) to the next stage of multi-objective
optimization. The three objectives were passed through the
multi-objective optimization framework and MINSOOP to
obtain the approximate Pareto set of solutions.

4.2. Generating the Pareto set with MINSOOP

The reduced problem with only three objectives was
then put into the multi-objective optimization framework as
shown inFig. 3. The capital cost was taken as the main ob-
jective with the other two objectives overall efficiency and
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5 SOFC current density added to the problem as constraints.
The reduced problem is shown below:

Min capital cost(CAP)

Subject to

Mass and energy balance constraints

Power rating(PWRTG) = 1472 kW

Overall efficiency(ACEFF) ≤ εi, i = 1, . . . , 100

Current density SOFC(CDSOFC)≤χi, i = 1, . . . , 100

ACEFFLB ≤ εi ≤ ACEFFUB

CDSOFCLB ≤ ci ≤ CDSOFCUB

(3)

Now the single objective optimization problems are solved
with these additional constraints. The values of the bounds
for the two are sampled by Hammersley sequence sampling.
Each of the 100 iterations leading to the generation of the
Pareto set is going to have a different combination of these
bounds sampled between the actual upper and lower bounds
of these objective functions.

4.3. Contour plots

The contour plots shown inFigs. 8 and 9give a represen-
tation of the trade-off solutions. InFig. 8, CO2 emissions
and overall efficiency are plotted on the two axes and the
contours represent different values of capital cost required
to obtain a design with the emissions and overall efficiency
values at the corresponding point. Similarly inFig. 9, the
contours represent the capital cost required to obtain the
corresponding values of overall efficiency and SOFC cur-
rent density. With this analysis, we were able to obtain de-
signs with up to 44% savings in capital cost, SOFC current
density as high as up to 12 times and with up to 43% less
CO2 emissions than the base case. These plots represent the
trade-off solutions and help in identifying several regions of
operations that may not be evident intuitively.

Let us observe the contour plots carefully. The high effi-
ciency and low emissions regions involve high capital costs.
We do have some low cost regions at high SOFC current
density but these involve low efficiency and high emissions.
Another major low cost region is with SOFC current density
between 350 and 500 mA/cm2, overall efficiency between 60
and 65% and CO2 emissions between 0.30 and 0.32 kg/kWh.
We see fromFig. 8that it is possible to operate the plant at a
low capital cost of less than US$ 1100/kW and still get CO2
emissions as low as 0.30 kg/kWh of electricity produced. We
can see inFig. 9 several regions where we have a moder-
ate capital cost US$ 1100–1200/kW and still get relatively
good values of current density (300–700 mA/cm2).

The best part about this kind of representation is that given
a particular value of current density or CO2 emissions, we
can easily identify the minimum cost, minimum emission
or the maximum possible SOFC current density that we can
achieve through this configuration. Then we can backtrack
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Fig. 5. Current density of SOFC, PEM and CO2 emissions for different SOFC-PEM hybrid plant designs.

Fig. 6. Current density of PEM and overall efficiency for different SOFC-PEM hybrid plant designs.

and find the values of the decision variables where we need
to operate to get this kind of performance. By doing this
exercise just once we can also get an idea of the differ-
ent amounts of capital cost involved and achievable current

Fig. 7. Capital cost, cost of electricity and CO2 emissions different
SOFC-PEM hybrid plant designs.

densities in different geographical locations, as each loca-
tion has different emission standards. Although this picture
gives several insights into the current problem, it is far from
a complete representation as we can only visualize three ob-
jectives out of the total seven considered.

4.4. Normalized multiple objectives

For getting the complete trade-off representation we nor-
malized all the objectives to get a value between 0 and 1,
such that the lower the value of the normalized objective
function the better the design.

If we want to maximize objectiveZ, then:

Znormalized= ZUB − Z

ZUB − ZLB

If we want to minimize objectiveZ, then:

Znormalized= Z − ZLB

ZUB − ZLB
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Fig. 8. Deterministic Pareto surface for CO2 emissions, overall efficiency and capital cost.

Fig. 9. Deterministic Pareto surface for overall efficiency, SOFC current density and capital cost.
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Fig. 10. Normalized objectives for design of SOFC-PEM hybrid fuel cell power plant.

These normalized values are plotted inFig. 10. The dashed
horizontal lines indicate the normalized values of the objec-
tives corresponding to the base case. Here, we can identify
several groups of designs with similar objective values. We
have identified four such groups and presented their compar-
ison with the base case. The corresponding objective func-
tions and decision variable values for various groups and
base case is presented inTable 4. Group 1 is the minimum
capital cost groups with 44% lower capital cost than the base
case. We also have lower CO2 emissions (up to 34%) and
higher SOFC current density (up to 6.5 times) than the base
case. But we lose in the overall efficiency of the system.

Table 4
Qualitatively similar design groups for the deterministic case

Base case Group 1 Group 2 Group 3
Min CAP
COST

Max CDSOFC Max CAP
COST

CAP 1773 986–1001 1014–1022 1501–1657
CO2EM 0.468 0.31–0.324 0.376–0.378 0.332–0.354
CDSOFC 75 384–487 876–881 401–483
ACEFF 0.73 0.6–0.64 0.522–0.524 0.558–0.595

UTIL 0.7 0.45–0.51 0.4 0.68–0.7
PPEM 25 31–36 74–75 22–37
ERAT 1.25 1.25 6 4.65–5.65
FUEL 20 22–24 25–28 23–27
AIR 200 133–143 583–630 762–1001

These types of designs are recommended when cost is the
most important factor. Group 2 presents designs with max-
imum SOFC current density (up to 12 times that of base
case) and low capital cost (1014–1022 $/kW). But again we
have to compromise heavily on efficiency and CO2 emis-
sions (22% higher than Group 1 though still 20% lower than
base case). These designs are recommended when emission
standards are not that stringent and high SOFC density is
desired. These also require operation of PEM at a higher
pressure. Group 3 designs are the ones representing the high
cost regions right in the middle of the Pareto surface plots.
These have higher cost than Groups 1 and 2 though still
up to 16% lower than base case. These also have interme-
diate values of current density, CO2 emissions and overall
efficiency. These regions in the Pareto surface should be
avoided. Group 4 designs have efficiency on the higher side
and lower values for SOFC current density and CO2 emis-
sions. The capital cost is also in the intermediate range. A
decision maker might want to choose such a design if he/she
wants the process to run at “moderate” conditions.

5. Effect of uncertainties on the MOP trade-off
surfaces

The earlier results presented the MOP trade-off sur-
faces for the conceptual design when uncertainties are not
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considered. Diwekar[11] described three kinds of uncer-
tainties featured in the life cycle of a plant:

1. Uncertainty with respect to the model parameters: These
parameters are a part of the deterministic model and not
actually subject to randomness. Theoretically their value
is an exact number. The uncertainty results from the im-
possibility of exactly modeling the physical behavior of
the system.

2. Uncertainty in the input variables: This kind of uncer-
tainty originates from the random nature and unpre-
dictability of certain process inputs.

3. Uncertainty in the initial conditions: These types of un-
certainties result due to the complications in predicting
the initial conditions of the operation.

As stated earlier, this technology is new and is at a con-
ceptual stage, therefore, we are considering the first type of
uncertainties, i.e. uncertainties related to model parameters.
Specially, we are concentrating on the two fuel cell models
in this study.

Fig. 11. Uncertainty factor distribution for SOFC current density.

Fig. 12. Uncertainty factor distribution for PEM current density.

5.1. Characterizing and quantifying uncertainties

In general, an essential component (apart from the elec-
trochemical reactions) of a fuel cell model is the current
density characteristic of a particular fuel cell. The current
density characteristic provides the voltage and current den-
sity profile, and is a function of fuel cell design. In this work,
we have used the experimental data reported in the literature
(for SOFC[12] and for PEM[12]) to characterize uncer-
tainties in the current density characteristic. A new model
parameter called uncertainty factor (UF) is defined as the
ratio between the experimental current density to that cal-
culated by the model. After calculation of uncertainty factor
for each of the current density data, the next step is the quan-
tification of uncertainty. The values of UFSOFC and UFPEM
are fitted to a probability density function (PDF). This PDF
gives the probability or frequency of occurrence of each un-
certainty factor.Figs. 11 and 12show how we characterized
the SOFC and PEM current density uncertainty factors. As
is clear from the graph (Fig. 11), the distribution of UFSOFC
is triangular and the most likely value is skewed to the right.
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Fig. 13. Schematic of the propagation of uncertainty through the ASPEN model.

The least likely value is 0.928 and the most likely value
is 1.3235. Similarly a log-normal distribution (Fig. 12) was
obtained for the PEM current density uncertainty factor.

5.2. The MOP framework under uncertainty

Once probability distributions are assigned to the
uncertain parameters, the next step is to propagate the
uncertainties and obtain the stochastic multi-objective op-
timization tradeoff surfaces. The conceptual framework for
this stochastic MOP problem is shown inFig. 14 where
the deterministic model inFig. 3 is replaced by a stochas-
tic modeling framework with a sampling loop. The input

Fig. 14. Stochastic multi-objective optimization framework.

of objective functions and decision variables are passed
to the multi-objective optimizer. The multi-objective op-
timizer converts the multi-objective to a single objective
problem using MINSOOP[7]. The single objective func-
tion and decision variables are passed to the NLP optimizer
which runs through the model via the efficient Hammer-
sley sequence sampling[9,10] and passes the results in
terms of probabilistic objectives and constraints back to the
multi-objective optimizer. At the end of all the runs, we get
the Pareto set of MOP solutions under uncertainty from the
multi-objective optimizer.

Fig. 13shows the ASPEN Plus[13,14] framework devel-
oped for the algorithmic framework described inFig. 14. The
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MINSOOP based MOP algorithm block formulates a single
objective optimization problem to obtain the Pareto set. The
ASPEN model contains detailed information for the process
and predicts deterministic values of the objective functions
and constraints. The NLP and the STOCHA blocks generate
the values of decision variables and uncertain parameters.
The Fortran access block accesses the uncertain variables
and decision variables of the process and replaces them with
the values obtained by the NLP and the STOCHA blocks.
The Fortran recycle block makes sure that the model calcu-
lations and stochastic calculations are repeated till the NLP
optimizer achieves convergence for all the single objective
optimization problems generated by the MOP block.

5.3. Stochastic MOP analysis

The payoff table is obtained by performing the optimiza-
tion for each stochastic objective (expected value in this
case) without any constraints thereby obtaining the bounds
for each objective. These values are shown inTable 5. The
Pareto surfaces obtained as a result of the stochastic opti-
mization framework are shown inFigs. 15–16. Note that
there is a considerable difference in the contour shape and
levels between the stochastic and deterministic Pareto sur-
faces. This can be attributed to the fact that the optimum de-
cision variables are different for the two cases as is evident
from Tables 3 and5. For example, for the maximum overall
efficiency case, airflow is lower for stochastic case than the
deterministic case. Minimum efficiency designs have higher
current density for stochastic case and lower air flow. This
decreased the capital cost more in the stochastic case than in
the deterministic case which changed the trade-off surface.
Similarly in case of maximum CO2 emission designs, the
airflow in the stochastic case is almost doubled resulting in
increased the capital cost and thereby changing the Pareto
surface (Fig. 15).

In Fig. 15capital costs have shifted towards lower levels as
compared to the deterministic designs shown inFig. 8. The
high cost regions at the lower right area of the deterministic
Pareto surface has shrunk remarkably and has split into two
small high cost area. The highest cost regions in the upper
right corner has disappeared altogether and has resulted in
moderate cost regions of US$ 1100–1200/kWh. In case of
Fig. 16, the high cost regions at the right hand side region
of the deterministic surface has disappeared and has been
replaced by low cost regions of US$ 900–1000/kWh. We
can see two high cost regions at the lower right area of the
stochastic surface. Good operating regions can be identified
at the centre of the plot with lowest cost of around US$
800/kWh, moderate current density of 400–500 mA/cm2 and
overall efficiency of 0.62–0.64.

To analyze the results further, we changed the contour
plots 9 and 16 toFigs. 17 and 18, respectively.Figs. 17–18
show the comparison between deterministic and stochas-
tic surfaces of overall efficiency, capital cost (on the two
axes) and SOFC current density as the contours. Note that
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Fig. 15. Stochastic Pareto surface for overall efficiency, CO2 emissions and capital cost.

the most likely value of the SOFC current density UFSOFC
was 1.3235. We see that the most likely value for the op-
timal current density in the Pareto surface is 300 mA/cm2

in the center region of the deterministic surface. However,
the most likely value in the stochastic surface appears to
be 600–700 mA/cm2, not corresponding to the most likely

Fig. 16. Stochastic Pareto surface for SOFC current density, overall efficiency and capital cost.

value of the most influential uncertain parameter UFSOFC.
This can be attributed to the nonlinearities of the model
and also emphasizes the need to consider uncertainty
analysis.

We also obtained qualitatively similar designs using nor-
malized objectives similar to the deterministic case.Table 6
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Fig. 17. Deterministic Pareto surface for overall efficiency, capital cost and SOFC current density.

shows the comparison between deterministic and stochas-
tic groups for three types of designs identified earlier,
namely, min capital cost (Group 1), max current density
(Group 2) and max capital cost (Group 3). It looks like

Fig. 18. Stochastic Pareto surface for overall efficiency, capital cost and SOFC current density.

inclusion of uncertainties in the current density character-
istics have increased the range of decision variables for
almost all the groups, thereby providing more flexibility to
designer.
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Table 6
Comparison of qualitatively similar design groups for stochastic and deterministic cases

Base case Deterministic Stochastic

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
Min CAP COST Max CDSOFC Max CAP COST Min CAP COST Max CDSOFC Max CAP COST

CAP 1773 986–1001 1014–1022 1501–1657 610–787 981–1020 1340–1675
CO2EM 0.468 0.31–0.324 0.376–0.378 0.332–0.354 0.31–0.36 0.376–0.379 0.29–0.35
CDSOFC 75 384–487 876–881 401–483 472–946 1015–1030 291–828
ACEFF 0.73 0.6–0.64 0.522–0.524 0.558–0.595 0.537–0.634 0.52–0.53 0.55–0.62

UTIL 0.7 0.45–0.51 0.4 0.68–0.7 0.4–0.59 0.4 0.4–0.6
PPEM 25 31–36 74–75 22–37 71–75 74.7–75 20–62
ERAT 1.25 1.25 6 4.65–5.65 1.25–3.58 6 1.25–3.89
FUEL 20 22–24 25–28 23–27 15.64–36.83 20.77–44.53 20.44–29.19
AIR 200 133–143 583–630 762–1001 85.89–367.26 595–1050 130.1–439

6. Conclusion

We have shown in this paper that the SOFC-PEM hy-
brid plant design is a multi-objective optimization problem
and presented a framework to handle these problems de-
terministically. The MOP framework presented here allows
for an efficient determination of the Pareto surface for the
problem. The Pareto surface provides an effective means to
assess the trade-offs amongst the multiple objectives. We
have shown that a multi-objective optimization framework
can help in identifying designs, which are more cost ef-
fective as well as environmentally friendly. The paper also
presents a methodology to characterize and quantify uncer-
tainties in fuel cell models. The effects of uncertainty on the
objectives have been analyzed by comparing the stochastic
and deterministic trade-off surfaces of different objectives.
We found that uncertainty had a considerable effect on the
objectives and the trade-off surfaces were markedly differ-
ent. Stochastic MOP identified a different decision variable
space in which to operate, with a lower capital cost. This
paper provides a first step towards an integrated approach to
synthesis of new and more efficient fuel cell hybrid power
plants.
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