Available online at www.sciencedirect.com o

SCIENCE<dDIRECT° PnWEn

www .elsevier.com /locate /jpowsour

ELSEVIER Journal of Power Sources 132 (2004) 99-112

Multi-objective optimization for hybrid fuel cells
power system under uncertainty

Karthik Subramanya®) Urmila M. Diwekar®*, Amit Goyal®

@ Departments of Bio, Chemical, and Industrial Engineering, Institute for Environmental Science & Policy, Center for Uncertain Systems, Tools for
Optimization and Management, University of Illinois at Chicago, 851 S Morgan Street, Mail Code 063, Chicago, IL 60607, USA
b Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 21 December 2003; accepted 30 December 2003

Abstract

One of the major applications of fuel cells is as onsite stationary electric power plants. Several types of configurations have been
hypothesized and tested for these kinds of applications at the conceptual level but hybrid power plants are one of the most efficient. These
are designs that combine a fuel cell cycle with other thermodynamic cycles to provide higher efficiency. Generally, the heat rejected by
the fuel cell at a higher temperature is used in a bottoming cycle to generate steam. In this work we are considering a conceptual design
of a solid oxide fuel cell-proton exchange membrane (SOFC-PEM) fuel cell hybrid power plant [R. Geisbrecht, Compact Electrochemical
Reformer Based on SOFC Technology, AIChE Spring National Meeting, Atlanta, GA, 2000] in which the high temperature SOFC fuel cell
acts both as electricity producer and fuel reformer for the low temperature PEM fuel cell (PEMFC). The exhaust from the PEM fuel cell
goes to a waste hydrogen burner and heat recovery steam generator that produces steam for further utilizations. Optimizing this conceptual
design involves consideration of a number of objectives. The process should have low pollutant emissions as well as cost competitive with
the existing technology. The solution of a multi-objective optimization problem is not a single solution but a complete non-dominated or
Pareto set, which includes the alternatives representing potential compromise solutions among the objectives. This makes a range of choice
available to decision makers and provides them with the trade-off information among the multiple objectives effectively. This paper presents
the optimal trade-off design solutions or the Pareto set for this hybrid power plant through a multi-objective optimization framework. This
hybrid technology is new and the system level models used for fuel cells performance have significant uncertainties in them. In this paper,
we characterize these uncertainties and study the effect of these uncertainties on the optimal trade-offs. The framework developed in this
work forms the basis for optimal design and synthesis of any power plant under uncertainties in the face of multiple objectives.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction issues, and for different configurations in order to obtain
the desired properties. Moreover, the development in the
Fuel cells are an important technology for a potentially area of new materials and other technologies where the per-
wide variety of applications including micropower, aux- formance and economic data is scarce and/or incomplete,
iliary power, transportation power, stationary power for calls for consideration of uncertainties in the design and
buildings and other distributed generation applications, and optimization. Furthermore, the problem involves multiple
central power. These applications are prevalent in a largeobjectives such as cost, process efficiency and pollutant
number of industries worldwide. Research efforts are being emissions. The conflicting nature of these objectives makes
made to design fuel cell plants with low emissions, high ef- the handling of this problem an even more formidable task.
ficiencies, high performance and low costs. High efficiency The solution of a multi-objective problem is a complete
hybrid fuel cell power plants are being conceptualized in non-dominated or Pareto set, which includes the alternatives
order to meet the great expectations from this technology. representing potential compromise solutions among the ob-
Also, a large number of materials need to be considered injectives. This makes a range of choice available to decision
the fuel cells for electrolyte issues, electrode performance makers and provides them with the trade-off information
among the multiple objectives effectively. In this paper, we
* Corresponding author. Tel:+1-312-355-3277. optimize the cost and performance of a new solid oxide
E-mail address: urmila@uic.edu (U.M. Diwekar). fuel cell-proton exchange membrane (SOFC-PEM) hybrid
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Fig. 1. SOFC-PEM hybrid fuel cell power plant.

power plant, evaluate and analyze the trade-offs betweengeneration cycle. This use of two fuel cells makes the cycle
the multiple objectives using an efficient multi-objective up to 37.8% more efficient than the case where only SOFC
framework. We use available experimental data from liter- is used (maximum efficiency of 52.4%). Natural gas, which
ature to characterize, quantify uncertainties in the currentis used as the fuel, is processed in a fuel pre reformer and
density characteristics of the fuel cell models. The uncer- fed to the SOFC, which acts as both electricity producer as
tainties are propagated through the flowsheet model andwell as a fuel reformer for the PEM fuel cell (PEMFC). The
the optimization framework to obtain stochastic trade-off exhaust fuel from the SOFC is cooled and shifted in a low
surfaces. temperature shifter that also functions as a low-pressure
The paper has been divided into six sectionsSSéwetion 2 steam boiler. Shifted fuel gas is then treated with pure
we discuss the salient features of the new SOFC-PEM hybrid oxygen in a selective catalytic oxidizer to reduce CO from
power plant. InSection 3the concept of multi-objective op-  several hundred parts per million (ppm) to below 10 ppm.
timization and a novel multi-objective optimization frame- The utilization of this reformed fuel is completed in the
work based on a new and efficient algorithm MINSOOP PEMFC where more favorable thermodynamics apply. The
for solving nonlinear multi-objective programming (MOP) exhaust from the PEMFC goes to a waste hydrogen burner
is described. The results of the MOP problem are presentedand heat recovery steam generator to utilize the waste heat
in Section 4 Section 5presents the stochastic approach to of the exhaust stream to make steam from water. This steam
MOP. The deterministic and stochastic results have beenproduced in the low temperature shifter and the heat recov-
compared in this sectiorBection 6puts forth conclusions  ery steam generator is used in both the SOFC and PEMFC.
drawn from this work. In the SOFC, steam is used as a reactant for the reforming
and downstream shift reactions and to control against the
carbon. In the PEMFC, steam is used to humidify fuel and
2. SOFC-PEM hybrid power plant air streams to maintain water balance in the electrolyte and

A solid oxide fuel cell-proton exchange membrane hy- Table 2
brid power plant was chosen as our case study. This is The objectives, constraints and decision variables for the hybrid fuel cell
a conceptual design being the focus of current researchPoWwer plant
and development program at National Energy Technology Objectives:
Laboratories (NETL)[1]. As shown inFig. 1, this plant Min capital cost (CAP)

contains two fuel cells combined with a heat recovery steam Min cost of electricity (COE)
Min CO, emissions (CO2EM)

Max current density SOFC (CDSOFC)

Table 1 Max current density PEM (CDPEM)
Base case design and performance of the SOFC-PEM hybrid fuel cell Max overall efficiency (ACEFF)
power plant Subject to:

SOFC PEM Mass and energy balance constraints

Power rating of 1472kW (base case)

Temperature °F) 1750 176
Pressure (psi) 20 25 Decision variables:
Current density (mA/cf) 75 190 Fuel utilization (UTIL)
Fuel utilization (%) 70 Equivalence ratio (ERAT)
Equivalence ratio 1.25 Pressure of the PEM (PPEM)

- — - Fuel flow (FUEL)
Power rating: 1472kW; overall efficiency: 72.6%; capital cost: US$  ajr flow (AIR)

1773/kW; CQ emissions: 5.61 kg/kWh; cost of electricity: 6.35 c/kWh.
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electrodes. Design and performance results obtained usingan approximation of it. As is well known, mathematics can-
ASPEN simulator moddl] are summarized iffiable 1 not isolate a unique optimum when there are multiple com-
The key assumptions in this advanced technology model peting objectives. Mathematics can at most aid designers to
are: (1) staged cells can be manufactured and installed at theeliminate design alternatives dominated by others, leaving a
same cost as unstaged cells, and (2) a sufficient number ofnumber of alternatives in what is called the Pareto[6ft
cells can be staged so as to closely approach the limiting casd-or each of these designs, it is impossible to improve one
performance for staged cells. As shown in the base case tabl@bjective without sacrificing the value of another relative to
(Table ), there are six objectives to be simultaneously opti- some other design alternative in the set. From among the
mized subject to highly complex non-linear models. More- dominating solutions, it is then a value judgment by the de-
over some objectives are conflicting and incommensurable, cision maker to select which design is the most appropriate.
i.e. it is not possible to improve them simultaneously and At issue is an effective means to find the members of the
there is always a trade-off. Hence a multi-objective optimiza- Pareto set for a design problem, especially when there are
tion framework is required to obtain the Pareto Jetble 2 more than two or three objectives; the analysis per design
shows the multi-objective optimization problem formulation requires significant computations to complete, and there are
for the current study of the hybrid power plant. an almost uncountable number of design alternatives. A pure
algorithmic approach to solving is to pick one of the objec-
tives to minimize while the remaining others are turned into
3. Multi-objective optimization framework inequality constraints with a parametric right-hand-side,
The problem takes on the following form:
As mentioned at the end of the previous section, the minimize Z;,
economic objectives along with GOemissions, overall
system efficiency and fuel cell current densities form the
set of multiple objectives to be optimized simultaneously #(x,y) =0, (2)
for which multi-objective optimization is requiref?,3].
A ; : : glx,y) =0,
Multi-objective problems appear virtually in every field and
in a wide variety of contextgl,5]. The problems solved vary
from designing spacecrafts, aircraft control systems, brldges,wherez is the chosenth objective that wished to be op-
vehicles, and highly accurate focusing systems, to fore- timized. Solving repeatedly for different values lof cho-
casting manpower supplies, selecting portfolios, blending sen between the uppet; (j) and lower bound&(j) leads
sausages, planning manufacturing systems, managing nuto the Pareto set. The multi-objective optimization algo-
clear waste disposal and storage, allocating water resourcessithm, minimization of single objective optimization prob-
and solving pollution control and management problems.  |ems (MINSOOP)7,8] used in this work uses the Hammer-
sley sequence samplig,10] to generate combinations of
3.1. The MINSOOP algorithm the right-hand-side. MINSOOP exploits timedimensional
uniformity of the HSS technique to obtain greater efficiency.
A generalized multi-objective optimization (or multi-  Fig. 2 shows how this MINSOOP algorithm improves effi-
objective programming) problem can be formulated as ciency for a simple, nonlinear, convex optimization problem,
follows: as the number of objectives increase.

Subjectto

Zy <Ly, k=1...,j—-1j+1,....,p; p=>2

minimizeZ = Z;, i=1...p;, p=>2
@ Conventional Method

Subjectto (1) m MINSOOP Algorithm
h(x,y) =0,

gx,y») =0,

100000
wherex andy are continuous and discrete decision variables, 10000 -
andpis the number of objective functions. The functidifs,

y) andg(x, y) represent equality and inequality constraints,
respectively. Though there is a large array of analytical tech-
nigques to solve this MOP problem, they are generally di-
vided into two basic types: preference-based methods and
generating method®]. Preference-based method like goal
programming attempt to quantify the decision maker’s pref-
erence and with this information, identifies the solution that
best satisfies the decision maker's preference. Generating
methods, such as the weighting method and the constraint
method, have been developed to find the exact Pareto set oFig. 2. Conventional method vs. the new efficient MINSOOP algorithm.
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Fig. 3. Deterministic multi-objective optimization framework.

The first step in solving MOP problems is to obtain a
payoff table. A payoff table contains single objective val-
ues from single optimization problem, and also provides po-
tential ranges of the objectives (values of the up@ex))
and lower bound€y(j)). The minimum value of4;) of
the Pareto surface is equal to the individual optimal value,
while the maximum valueZ;) of the Pareto surface is the
maximum value of that objective function found when min-
imizing other objectives. In this way, an approximate range
of the right-hand-side; in the MINSOOP algorithm de-
scribed previously is determined.

Fig. 3 shows the framework that utilizes the MINSOOP
algorithm to address the deterministic MOP (no uncertain-
ties) with six objective functions. Inputs are given to the
multi-objective optimizer, which formulates single objective
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Capital Cost vs. Cost of Electricity
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Fig. 4. Capital cost and cost of electricity for different SOFC-PEM hybrid
plant designs.

mate trends of different objectives. The following subsection
presents the analysis of payoff table for the deterministic
MOP problem at hand.

4.1. Payoff table analysis

The payoff table Table 3 shows the objective values of
10 different designs that were obtained by maximizing and
minimizing each of six objectives using the NLP optimizer.
These values are plotted Fgs. 4—7

To reduce the complexity of the problem, we can look
at trends of various objectives plotted Figs. 4—7 As we
can see inFig. 4, both capital cost and the cost of elec-
tricity follow the same trend. These two objectives are both
maximized and minimized at the same set of decision vari-
ables. Therefore, we dropped one of the objectives and con-
sidered only one in the next stage of multi-objective opti-

NLP optimization problems and passes them on to the NLP mization. Also inFig. 5, the SOFC current density and €O
optimizer. The successive quadratic programming (SQP) emissions are seen to have the same trend and can be com-
method is used for this framework because it requires far bined as one. Although the value of SOFC current density
fewer function and gradient evaluations than other methodsshows a lot of variation the PEM current density remains

for highly nonlinear constrained optimization, and it does not

relatively constant showing little sensitivity to the change

need feasible points at intermediate iterations. Both of thesein decision variables. Hence, we do not need to include it
properties make SQP one of the most promising techniquesin the set of objectivesrig. 6 indicates a similar trend be-

for problems dealing with nonlinear constraint optimization,
like process simulationgb]. The NLP optimizer gives the
optimal value of the objective functions and the decision

variables which are passed back to the multi-objective opti-

tween the PEM current density and the overall efficiency
andFig. 7 demonstrates that the capital cost, cost of elec-
tricity and CQ emissions follow the same trend. So finally,

we carry three objectives (capital cost, overall efficiency and

mizer. This step is repeated about a 100-150 (estimated forSOFC current density) to the next stage of multi-objective

MINSOOP algorithm) times until we get a good approxi-
mation of the Pareto optimal set of solutions to the problem.

4, Deterministic MOP results and discussions

A payoff table is widely used in decision analysis, where

optimization. The three objectives were passed through the
multi-objective optimization framework and MINSOOP to
obtain the approximate Pareto set of solutions.

4.2. Generating the Pareto set with MINSOOP

The reduced problem with only three objectives was

it specifies the alternatives, acts, or events. Especially inthen put into the multi-objective optimization framework as
MOP, a payoff table shows a potential range of values of shown inFig. 3. The capital cost was taken as the main ob-

each objective. Further, this helps to identify the approxi-

jective with the other two objectives overall efficiency and



Table 3

The bounds for different objectives calculated by deterministic multi-objective optimization: a deterministic payoff table

Min ACEFF Min CAP Min COE Max CO2EM Min CO2EM Max CDPEM Min CDPEM Min CDSOFC Max CDSOFC

Max ACEFF

10

1
1475.1856

Design no.
PWRTG
ACEFF
CAP

1500.24142 1496.3793 1471.963 1471.99

1470.4051

1634.293405

1469.0955

1568.32587

1465.51

0.518409419
563.5081708

3.33E-02

0.726258777

1664.6514

6.28E-02

0.7077066
1289.6887

5.15E-02

0.57530437
739.9451

3.68E-02

0.7066749
1281.92286

4.15E-02

0.5426174

1444.397
5.05E-02

0.58273
993.38655

4.28E-02

0.6008321
994.783579
4.16E-02

52

0.
1599.80938

0.7232446

1456.4933

5.63E-02

5.67E-02

COE

0.380681345

873.9142?517
318.9547832

0.2717334
76.34382
293.602876

0.7

0.27885679

149.0192

0.343033
678.179
319.5917

0.4
75

0.2793638
157.6117844
294.38629

0.36369784

737.209689
294.63637
0.41114
20.1208
3.01218
29.7814

359.824

0.3386584

616.0684

0.3284591

531.131

0.37885684

672.009
304.847

0.2728659

101.86

CO2EM

CDSOFC
CDPEM
UTIL

287.22287

0.7

307.62895
0.40266
36.189
1.25

308.62476

290.3345
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BNE58 SOFC current density added to the problem as constraints.
i NS The reduced problem is shown below:

o
Ln

0.7
26.3631

0.43617
39.7391
1.25

0.55147

36.8556

0.69993
23.3115

25.3265

20

PPEM
ERAT
FUEL
AIR

1.25
20.0408

171.08

1.70141
20.9073

242.929

1.88651
25.7853

189.831

1.79611
20.5743

252.367

5.69168
27.8188

851.883

1.37434
20.1683

189.276

24.9279
122.408

25.8102

137.29

Min capital cos{CAP)

Subjectto

Mass and energy balance constraints

Power ratingPWRTG) = 1472 kW 3)
Overall efficiencf ACEFF) <¢;, i=1,...,100
Currentdensity SOFCCDSOFQ<y;, i =1,...,100
ACEFR B < ¢ < ACEFRyB

CDSOFQGp < ¢; < CDSOFGQp

Now the single objective optimization problems are solved
with these additional constraints. The values of the bounds
for the two are sampled by Hammersley sequence sampling.
Each of the 100 iterations leading to the generation of the
Pareto set is going to have a different combination of these
bounds sampled between the actual upper and lower bounds
of these objective functions.

4.3. Contour plots

The contour plots shown iRigs. 8 and Qive a represen-
tation of the trade-off solutions. IRig. 8 CO, emissions
and overall efficiency are plotted on the two axes and the
contours represent different values of capital cost required
to obtain a design with the emissions and overall efficiency
values at the corresponding point. Similarly Fig. 9, the
contours represent the capital cost required to obtain the
corresponding values of overall efficiency and SOFC cur-
rent density. With this analysis, we were able to obtain de-
signs with up to 44% savings in capital cost, SOFC current
density as high as up to 12 times and with up to 43% less
CO, emissions than the base case. These plots represent the
trade-off solutions and help in identifying several regions of
operations that may not be evident intuitively.

Let us observe the contour plots carefully. The high effi-
ciency and low emissions regions involve high capital costs.
We do have some low cost regions at high SOFC current
density but these involve low efficiency and high emissions.
Another major low cost region is with SOFC current density
between 350 and 500 mA/cyoverall efficiency between 60
and 65% and C@emissions between 0.30 and 0.32 kg/kWh.
We see frontig. 8that it is possible to operate the plant at a
low capital cost of less than US$ 1100/kW and still get,CO
emissions as low as 0.30 kg/kWh of electricity produced. We
can see irFig. 9 several regions where we have a moder-
ate capital cost US$ 1100-1200/kW and still get relatively
good values of current density (300—700 mAfm

The best part about this kind of representation is that given
a particular value of current density or @@missions, we
can easily identify the minimum cost, minimum emission
or the maximum possible SOFC current density that we can
achieve through this configuration. Then we can backtrack
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Current Density of SOFC and PEM vs CO ; Emissions
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Fig. 5. Current density of SOFC, PEM and g£@missions for different SOFC-PEM hybrid plant designs.
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Fig. 6. Current density of PEM and overall efficiency for different SOFC-PEM hybrid plant designs.

and find the values of the decision variables where we needdensities in different geographical locations, as each loca-
to operate to get this kind of performance. By doing this tion has different emission standards. Although this picture
exercise just once we can also get an idea of the differ- gives several insights into the current problem, it is far from
ent amounts of capital cost involved and achievable currenta complete representation as we can only visualize three ob-
jectives out of the total seven considered.
Capital Cost, Cost of Electricity and CO; emissions

4.4. Normalized multiple objectives
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z = . .
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=] . .
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Fig. 10. Normalized objectives for design of SOFC-PEM hybrid fuel cell power plant.

These normalized values are plottedrig. 10 The dashed  These types of designs are recommended when cost is the
horizontal lines indicate the normalized values of the objec- most important factor. Group 2 presents designs with max-
tives corresponding to the base case. Here, we can identifyimum SOFC current density (up to 12 times that of base
several groups of designs with similar objective values. We case) and low capital cost (1014-1022 $/kW). But again we
have identified four such groups and presented their compar-have to compromise heavily on efficiency and £émis-
ison with the base case. The corresponding objective func-sions (22% higher than Group 1 though still 20% lower than
tions and decision variable values for various groups and base case). These designs are recommended when emission
base case is presentedTiable 4 Group 1 is the minimum  standards are not that stringent and high SOFC density is
capital cost groups with 44% lower capital cost than the basedesired. These also require operation of PEM at a higher
case. We also have lower G@missions (up to 34%) and pressure. Group 3 designs are the ones representing the high
higher SOFC current density (up to 6.5 times) than the basecost regions right in the middle of the Pareto surface plots.
case. But we lose in the overall efficiency of the system. These have higher cost than Groups 1 and 2 though still
up to 16% lower than base case. These also have interme-
diate values of current density, G@missions and overall
efficiency. These regions in the Pareto surface should be
T —— E— E— avoided. Group 4 designs have efficiency on the higher side

i C“EP Mo %’SSOFC MaXOgApP and lower values for SOFC current density andzGnis-
sions. The capital cost is also in the intermediate range. A

Table 4
Qualitatively similar design groups for the deterministic case

COST COST
CAP 1773 9861001 1014—1022 15011657  decision maker might want to choose such a q§5|gn if he/she
CO2EM 0.468 0.31-0324 0.376-0.378 0.332-0.354 Wants the process to run at “moderate” conditions.
CDSOFC 75 384-487 876-881 401-483
ACEFF 073  0.6-0.64 0.522-0.524 0.558-0.595
UTIL 0.7 0.45-0.51 0.4 0.68-0.7 5. Effect of uncertainties on the MOP trade-off
PPEM 25 31-36 74-75 22-37 surfaces
ERAT 1.25 1.25 6 4.65-5.65
FUEL 20 22-24 25-28 23-27 The earlier results presented the MOP trade-off sur-
AR 200 133-143 583-630 762-1001

faces for the conceptual design when uncertainties are not
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considered. Diwekaf11] described three kinds of uncer-
tainties featured in the life cycle of a plant:

1.

5.1. Characterizing and quantifying uncertainties

In general, an essential component (apart from the elec-

Uncertainty with respect to the model parameters: Thesetrochemical reactions) of a fuel cell model is the current
parameters are a part of the deterministic model and notdensity characteristic of a particular fuel cell. The current
actually subject to randomness. Theoretically their value density characteristic provides the voltage and current den-

is an exact number. The uncertainty results from the im-
possibility of exactly modeling the physical behavior of
the system.

. Uncertainty in the input variables: This kind of uncer-

tainty originates from the random nature and unpre-
dictability of certain process inputs.

. Uncertainty in the initial conditions: These types of un-

certainties result due to the complications in predicting
the initial conditions of the operation.

As stated earlier, this technology is new and is at a con-

sity profile, and is a function of fuel cell design. In this work,
we have used the experimental data reported in the literature
(for SOFC[12] and for PEM[12]) to characterize uncer-
tainties in the current density characteristic. A new model
parameter called uncertainty factor (UF) is defined as the
ratio between the experimental current density to that cal-
culated by the model. After calculation of uncertainty factor
for each of the current density data, the next step is the quan-
tification of uncertainty. The values of dbrcand Ukpgy

are fitted to a probability density function (PDF). This PDF
gives the probability or frequency of occurrence of each un-

ceptual stage, therefore, we are considering the first type ofcertainty factorFigs. 11 and 13how how we characterized
uncertainties, i.e. uncertainties related to model parametersthe SOFC and PEM current density uncertainty factors. As
Specially, we are concentrating on the two fuel cell models is clear from the graphHig. 11), the distribution of Ukorc

in this study.

is triangular and the most likely value is skewed to the right.
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Fig. 11. Uncertainty factor distribution for SOFC current density.
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Fig. 12. Uncertainty factor distribution for PEM current density.
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Fig. 13. Schematic of the propagation of uncertainty through the ASPEN model.

The least likely value is 0.928 and the most likely value of objective functions and decision variables are passed

is 1.3235. Similarly a log-normal distributiofrig. 12 was
obtained for the PEM current density uncertainty factor.

5.2. The MOP framework under uncertainty

to the multi-objective optimizer. The multi-objective op-
timizer converts the multi-objective to a single objective
problem using MINSOOR7]. The single objective func-
tion and decision variables are passed to the NLP optimizer
which runs through the model via the efficient Hammer-

Once probability distributions are assigned to the sley sequence samplin,10] and passes the results in
uncertain parameters, the next step is to propagate theterms of probabilistic objectives and constraints back to the
uncertainties and obtain the stochastic multi-objective op- multi-objective optimizer. At the end of all the runs, we get

timization tradeoff surfaces. The conceptual framework for

this stochastic MOP problem is shown kig. 14 where

the deterministic model ifrig. 3 is replaced by a stochas-
tic modeling framework with a sampling loop. The input

the Pareto set of MOP solutions under uncertainty from the
multi-objective optimizer.

Fig. 13shows the ASPEN PIy4d 3,14]framework devel-
oped for the algorithmic framework describedHig. 14 The
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N

Function &
Constraints
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Parameters
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Fig. 14. Stochastic multi-objective optimization framework.



Table 5

The bounds for different objectives calculated by stochastic multi-objective optimization: a stochastic payoff table

Min CAP Min COE Max CO2EM Min CO2EM Max CDPEM Min CDPEM Min CDSOFC Max CDSOFC

Min ACEFF

Max ACEFF

10

Design no.
PWRTG
ACEFF
CAP

1503.85904 1487.78599 1550.2675 1480.164724 1474.446793 1472.66539 1483.29328 1468.19915 1471.686032

1469.0811

0.51601781
464.5987811

0.724465776

0.57419628 0.7103846
733.659472 1371.77014 2256.227124
5.38E-02 7.53E-02

3.66E-02

0.721052248
1676.189157

6.26E-02

0.493840626

1426.286958
5.16E-02

0.5783063
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4.10E-02

0.59571748
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4.19E-02

0.53642795
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0.7199859
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3.07E-02

0.26698508
85.97010126

253.0061513

0.7

5.35E-02

6.28E-02

COE

0.27227723
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0.7

0.33685616
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0.4

75
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MINSOOP based MOP algorithm block formulates a single
objective optimization problem to obtain the Pareto set. The
ASPEN model contains detailed information for the process
and predicts deterministic values of the objective functions
and constraints. The NLP and the STOCHA blocks generate
the values of decision variables and uncertain parameters.
The Fortran access block accesses the uncertain variables
and decision variables of the process and replaces them with
the values obtained by the NLP and the STOCHA blocks.
The Fortran recycle block makes sure that the model calcu-
lations and stochastic calculations are repeated till the NLP
optimizer achieves convergence for all the single objective
optimization problems generated by the MOP block.

5.3. Sochastic MOP analysis

The payoff table is obtained by performing the optimiza-
tion for each stochastic objective (expected value in this
case) without any constraints thereby obtaining the bounds
for each objective. These values are showifable 5 The
Pareto surfaces obtained as a result of the stochastic opti-
mization framework are shown iRigs. 15-16 Note that
there is a considerable difference in the contour shape and
levels between the stochastic and deterministic Pareto sur-
faces. This can be attributed to the fact that the optimum de-
cision variables are different for the two cases as is evident
from Tables 3 and. For example, for the maximum overall
efficiency case, airflow is lower for stochastic case than the
deterministic case. Minimum efficiency designs have higher
current density for stochastic case and lower air flow. This
decreased the capital cost more in the stochastic case than in
the deterministic case which changed the trade-off surface.
Similarly in case of maximum Cg®emission designs, the
airflow in the stochastic case is almost doubled resulting in
increased the capital cost and thereby changing the Pareto
surface Fig. 15.

In Fig. 15capital costs have shifted towards lower levels as
compared to the deterministic designs showfrim 8 The
high cost regions at the lower right area of the deterministic
Pareto surface has shrunk remarkably and has split into two
small high cost area. The highest cost regions in the upper
right corner has disappeared altogether and has resulted in
moderate cost regions of US$ 1100-1200/kWh. In case of
Fig. 16 the high cost regions at the right hand side region
of the deterministic surface has disappeared and has been
replaced by low cost regions of US$ 900-1000/kWh. We
can see two high cost regions at the lower right area of the
stochastic surface. Good operating regions can be identified
at the centre of the plot with lowest cost of around US$
800/kWh, moderate current density of 400-500 mA/emd
overall efficiency of 0.62—-0.64.

To analyze the results further, we changed the contour
plots 9 and 16 td-igs. 17 and 18respectivelyFigs. 17-18
show the comparison between deterministic and stochas-
tic surfaces of overall efficiency, capital cost (on the two
axes) and SOFC current density as the contours. Note that
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Fig. 15. Stochastic Pareto surface for overall efficiency, @®issions and capital cost.

the most likely value of the SOFC current densityddEc value of the most influential uncertain parametersdfc

was 1.3235. We see that the most likely value for the op- This can be attributed to the nonlinearities of the model
timal current density in the Pareto surface is 300mA/cm and also emphasizes the need to consider uncertainty
in the center region of the deterministic surface. However, analysis.

the most likely value in the stochastic surface appears to We also obtained qualitatively similar designs using nor-
be 600—700 mA/ci not corresponding to the most likely malized objectives similar to the deterministic caEable 6
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Fig. 16. Stochastic Pareto surface for SOFC current density, overall efficiency and capital cost.
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Fig. 17. Deterministic Pareto surface for overall efficiency, capital cost and SOFC current density.

shows the comparison between deterministic and stochasdinclusion of uncertainties in the current density character-
tic groups for three types of designs identified earlier, istics have increased the range of decision variables for
namely, min capital cost (Group 1), max current density almost all the groups, thereby providing more flexibility to
(Group 2) and max capital cost (Group 3). It looks like designer.
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Fig. 18. Stochastic Pareto surface for overall efficiency, capital cost and SOFC current density.
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Table 6
Comparison of qualitatively similar design groups for stochastic and deterministic cases
Base case Deterministic Stochastic

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

Min CAP COST Max CDSOFC Max CAP COST Min CAP COST Max CDSOFC Max CAP COST
CAP 1773 986-1001 1014-1022 1501-1657 610-787 981-1020 1340-1675
CO2EM 0.468 0.31-0.324 0.376-0.378 0.332-0.354 0.31-0.36 0.376-0.379 0.29-0.35
CDSOFC 75 384-487 876-881 401-483 472-946 1015-1030 291-828
ACEFF 0.73 0.6-0.64 0.522-0.524 0.558-0.595 0.537-0.634 0.52-0.53 0.55-0.62
UTIL 0.7 0.45-0.51 0.4 0.68-0.7 0.4-0.59 0.4 0.4-0.6
PPEM 25 31-36 74-75 22-37 71-75 74.7-75 20-62
ERAT 1.25 1.25 6 4.65-5.65 1.25-3.58 6 1.25-3.89
FUEL 20 22-24 25-28 23-27 15.64-36.83 20.77-44.53 20.44-29.19
AIR 200 133-143 583-630 762-1001 85.89-367.26 595-1050 130.1-439
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